Some Characterization Of Multi-Anti Fuzzy Group

R. Muthuraj
PG and Research Department of Mathematics, H.H. The Rajah’s College, Pudukkottai-622 001, Tamilnadu, India

S. Balamurugan
Department of Mathematics, Velammal College of Engineering & Technology, Madurai-625 009, Tamilnadu, India
Abstract

Theory of Multi-fuzzy set is an extension of the theory of fuzzy set, which deals with the multi-dimensional fuzziness. In this paper we extend the concept of multi-anti fuzzy subgroup and discussed some of its properties.

Mathematics Subject Classification: MSC: 20N25; 03E72; 08A72

Keywords: Multi-fuzzy set; anti fuzzy subgroup; multi-anti fuzzy subgroup; normal multi-anti fuzzy subgroup

1. Introduction

The theory of multi-fuzzy set was introduced by Sabu Sebastian and T.V.Ramakrishnan [23,24,25] which was in terms of multi-dimensional membership functions and they investigated some properties of multi-level fuzziness. Theory of multi-fuzzy set is an extension of theory of fuzzy sets. Complete characterization of many real life problems can be done by multi-fuzzy membership functions of the objects involved in the problem. Rosenfeld [22] started fuzzification of various algebraic concepts by his paper Fuzzy groups. N.Palaniappan and R.Muthuraj [18] introduced the inter-relationship between the anti fuzzy group and its lower level subgroups. R.Muthuraj and S.Balamurugan [15] proposed the inter-relationship between the multi-anti fuzzy group and its lower level subgroups and also they [17] proposed the inter-relationship between the multi-anti fuzzy group and its level subgroups. In this paper we extend the basic concepts of group theory into multi-fuzzy sets.

2. Preliminaries

In this section, we site the fundamental definitions that will be used in the sequel.

Definition 2.1 [28] A fuzzy subset μ of a non-empty set X is a function from X to $[0,1]$. That is, $\mu: X \rightarrow [0,1]$.

Definition 2.2 [23] A multi-fuzzy set A of a non-empty set X is

$$A = \{ (x, (\mu_i(x)))_{i \in I} : x \in X, \mu_i: X \rightarrow L_i = [0,1], i \in I \}.$$

The function $\mu_A = (\mu_i)_{i \in I}$ is called the multi-membership function of the multi-fuzzy set A. If $|I| = n$, a natural number, then n is called the dimension of A or $\dim(A)$.

The Complement of A is $A' = \{ (x, (\mu_i'(x)))_{i \in I} : x \in X \}$, where μ_i' is the complement of μ_i. That is, $\mu_i' = (1-\mu_i)$.
Definition 2.3 [25] Let $A = \{ (x, (\mu_i(x))_{i \in I}) : x \in X, i \in I, \mu_i : X \to L_i = [0,1] \}$ and $B = \{ (x, (\nu_i(x))_{i \in I}) : x \in X, i \in I, \nu_i : X \to L_i = [0,1] \}$ be multi-fuzzy sets in a non-empty set X. Then $A \subseteq B$ if and only if $\mu_i(x) \leq \nu_i(x)$, $\forall x \in X$ and $\forall i \in I$.

The equality, union and intersection of A and B are defined as:

(i) $A = B$ if and only if $\mu_i(x) = \nu_i(x)$, $\forall x \in X$ and $\forall i \in I$;

(ii) $A \cup B = \{ (x, \max \{\mu_i(x), \nu_i(x)\}_{i \in I}) : x \in X \}$;

(iii) $A \cap B = \{ (x, \min \{\mu_i(x), \nu_i(x)\}_{i \in I}) : x \in X \}$.

Proposition 2.4 [25] Let A and B be any two multi-fuzzy sets in X. Then

(i) $A \cup A = A$, $A \cap A = A$;

(ii) $A \subseteq A \cup B$, $B \subseteq A \cup B$, $A \cap B \subseteq A$ and $A \cap B \subseteq B$;

(iii) $A \subseteq B$ if and only if $A \cup B = B$;

(iv) $A \subseteq B$ if and only if $A \cap B = A$.

Proposition 2.5 If A and B are any two non-empty multi-fuzzy sets of a group G, then $(A \circ B)^{-1} = B^{-1} \circ A^{-1}$.

Proposition 2.6 [24] If A and B are any two multi-fuzzy sets of X, then

(i) $A \subseteq B$, $t = (t_1, t_2, \ldots)$ where $t_i \in [0,1] \Rightarrow A_t \subseteq B_t$, where $A_t = \{ x \in X / \mu(x) \geq t \}$

(ii) $r \leq s$, $r = (r_1, r_2, \ldots)$, $s = (s_1, s_2, \ldots)$, where $r_i, s_i \in [0,1] \Rightarrow A_r \subseteq A_s$

(iii) $A = B$ $\Leftrightarrow A_t = B_t$, $\forall t = (t_1, t_2, \ldots)$ where $t_i \in [0,1]$

Proposition 2.7 Let $\{ A_i / i \in I \}$ be the family of all multi-fuzzy sets of G. Then for any $t = (t_1, t_2, \ldots)$ where $t_i \in [0,1]$, $\forall i \in I$,

(i) $\cup (A_i) \subseteq (\cup A_i)_t$

(ii) $\cap (A_i) = (\cap A_i)_t$

Corollary: If I is finite in the above Proposition 2.7, then equality holds in the proof (i).

3. Multi-Anti Fuzzy Group

In this section, we discuss some properties of the multi-anti fuzzy group.

Definition 3.1 [18] A fuzzy subset μ of a group G is said to be anti-fuzzy subgroup of G if for all $x, y \in G$,

(i) $\mu(xy) \leq \max \{\mu(x), \mu(y)\}$

(ii) $\mu(x^{-1}) = \mu(x)$
Definition 3.2 [15] A multi-fuzzy set A of a group G is said to be a multi-anti fuzzy subgroup of G if for all $x, y \in G$,

(i) $A(xy) \leq \max\{A(x), A(y)\}$

(ii) $A(x^{-1}) = A(x)$

Definition 3.3 [15] A multi-fuzzy set A of a group G is called a multi-anti fuzzy subgroupoid of G if:

$A(xy) \leq \max\{A(x), A(y)\}$, for all $x, y \in G$.

Theorem 3.1 The multi-fuzzy set $A = (A_1, A_2, \ldots, A_n)$ is a multi-anti fuzzy subgroup of G iff each A_i's are anti fuzzy subgroup of G, $\forall i \in I$.

Proof Let $A = (A_1, A_2, \ldots, A_n)$ be a multi-anti fuzzy subgroup of G.

Then $\forall x, y \in G$, $A(xy) \leq \max\{A(x), A(y)\}$

$\iff (A_i(xy))_{i \in I} \leq \max\{(A_i(x))_{i \in I}, (A_i(y))_{i \in I}\}$

$\iff (A_i(xy))_{i \in I} \leq \max\{(A_i(x)), (A_i(y))\}_{i \in I}$

$\iff A_i(xy) \leq \max\{A_i(x), A_i(y)\}$, $\forall i \in I$ and $\forall x, y \in G$

$\iff A_i$ is anti fuzzy subgroup of G, $\forall i \in I$

\iff each A_i's are anti fuzzy subgroup of G.

Hence the Theorem.

Theorem 3.2 The multi-fuzzy set $A = (A_1, A_2, \ldots, A_n)$ is a multi-fuzzy subgroup of a group G iff its complement A^c is a multi-anti fuzzy subgroup of G.

Proof Let $A = (A_1, A_2, \ldots, A_n)$ be a multi-fuzzy subgroup of G.

\iff each A_i is a fuzzy subgroup of G, by the Theorem 3.1.

\iff each A_i^c is anti fuzzy subgroup of G

$\iff (A_1^c, A_2^c, \ldots, A_n^c)$ is a multi-anti fuzzy subgroup of G, by the Theorem 3.1.

$\iff A^c$ is a multi-anti fuzzy subgroup of G.

Definition 3.4 Let A be a multi-fuzzy subset of a group G and let $\langle A \rangle = \bigcup\{B \mid A \subseteq B, B$ is a multi-anti fuzzy subgroup of $G\}$. Then $\langle A \rangle$ is called the multi-anti fuzzy subgroup of G generated by A.

Theorem 3.3 Let A be a multi-fuzzy set of G and let $\langle A \rangle = \bigcup\{B \mid A \subseteq B, B$ is a multi-anti fuzzy subgroup of $G\}$. Prove that $\langle A \rangle$ is the multi-anti fuzzy subgroup of G.

Proof Let $x, y \in G$.

Then $\langle A \rangle(xy^{-1}) = (\bigcup B)(xy^{-1})$
\[
\text{Sup } B(xy^{-1}) \\
\leq \text{Sup } \{ \text{max} \{B(x), B(y)\} \} \text{, since } B \text{ is a multi-anti fuzzy subgroup of } G.
\]
\[
= \max \{ \text{Sup } B(x), \text{Sup } B(y)\}
\]
\[
= \max \{ (\cup B)(x), (\cup B)(y)\}
\]
\[
= \max \{ \langle A \rangle(x), \langle A \rangle(y) \}
\]
That is, \(\langle A \rangle(xy^{-1}) \leq \max \{ \langle A \rangle(x), \langle A \rangle(y) \}\)

Therefore, \(\langle A \rangle\) is a multi-anti fuzzy subgroup of \(G\).

Remarks
1. \(\langle A \rangle\) is called the multi-anti fuzzy subgroup of \(G\) generated by \(A\).
2. \(\langle A \rangle\) is the largest multi-anti fuzzy subgroup of \(G\) which contains \(A\).

Theorem 3.4 Let \(H\) be a group and \(B\) be a multi-anti fuzzy subgroup of \(H\). Let \(f\) be a homomorphism of \(G\) into \(H\). Then \(f^{-1}(B)\) is a multi-anti fuzzy subgroup of \(G\).

Proof Let \(x, y \in G\) and let \(B = (B_1, B_2, ..., B_i, ..., B_n)\) be a multi-anti fuzzy subgroup of \(H\).

\[\implies\] each \(B_i\) ‘s are anti fuzzy subgroup of \(H\), by the Theorem 3.1.

Given \(f : G \rightarrow H\) is a homomorphism.

Claim: \(f^{-1}(B)\) is a multi-anti fuzzy subgroup of \(G\). i.e., \(f^{-1}(B_i)\) is anti fuzzy subgroup of \(G\).

Now, \(f^{-1}(B_i)(xy^{-1}) = B_i(f(xy^{-1}))\), by the extension principle of fuzzy set.

\[
= B_i(f(x)f(y^{-1})) \text{, since } f \text{ is homomorphism.}
\]
\[
= B_i(f(x)f(y))
\]
\[
\leq \max \{ B_i(f(x)), B_i(f(y)) \} \text{, since each } B_i \text{ is anti fuzzy subgroup of } H.
\]
\[
= \max \{ B_i(f(x)), B_i(f(y)) \}
\]
\[
= \max \{ f^{-1}(B_i)(x), f^{-1}(B_i)(y) \}
\]
Therefore, \(f^{-1}(B_i)\) is anti fuzzy subgroup of \(G\), \(\forall i\).

Which implies that \(f^{-1}(B)\) is a multi-anti fuzzy subgroup of \(G\), by the Theorem 3.1.

Hence the Theorem.

Theorem 3.5 If both \(A\) and \(B\) are multi-anti fuzzy subgroups of \(G\), then \((A+B)\) is a multi-anti fuzzy subgroup of \(G\).

Proof Given that both \(A\) and \(B\) are multi-anti fuzzy subgroups of \(G\).

That is, \(\forall x, y \in G\), \(A(xy^{-1}) \leq \max \{ A(x), A(y) \}\) and \(B(xy^{-1}) \leq \max \{ B(x), B(y) \}\)

Now, \(\forall x, y \in G\),

\[
(A+B)(xy^{-1}) = A(xy^{-1}) + B(xy^{-1}) - A(xy^{-1})B(xy^{-1})
\]
\[\leq \max\{ A(x), A(y) \} + \max\{ B(x), B(y) \} - \max\{ A(x), A(y) \} \max\{ B(x), B(y) \} \]
\[= \max\{ A(x) + B(x) - A(x)B(x), A(y) + B(y) - A(y)B(y) \} \]
\[= \max\{ (A+B)(x), (A+B)(y) \} \]

That is, \((A+B)(xy^{-1}) \leq \max\{ (A+B)(x), (A+B)(y) \}, \forall x,y \in G\)

Therefore, \((A+B)\) is a multi-anti fuzzy subgroup of \(G\).

Hence the Theorem.

Theorem 3.6 If \(A\) and \(B\) are multi-anti fuzzy subgroups of \(G\), then \((A+B)\) is a multi-anti fuzzy subgroup of \(G\).

Proof It is clear.

Theorem 3.7 Let \(G\) be a group and \(A\) be a multi-anti fuzzy subgroup of \(G\). If \(A(x) < A(y)\) for some \(x,y \in G\), then \(A(xy) = A(y) = A(yx)\).

Proof Given that \(A(x) < A(y)\) for some \(x,y \in G\).

Since \(A\) is a multi-anti fuzzy subgroup of \(G\),

\[\forall x,y \in G, \ A(xy) \leq \max\{A(x), A(y)\} = A(y) \ldots \ldots \ldots (1) \]

Now, \(A(y) = A(x^{-1}(xy)) \)
\[\leq \max\{A(x^{-1}), A(xy)\} \]
\[= \max\{A(x), A(xy)\} \]
\[= A(xy), \text{ since } A(x) < A(y), A(x) < A(xy) \]

That is, \(A(y) \leq A(xy) \ldots \ldots \ldots \ldots \ldots (2) \)

Because, \(A(x) < A(y) \Rightarrow A(xx) < A(xy)\)

but \(A(xx) \leq \max\{A(x), A(x)\} = A(x)\)

That is, this \(\Rightarrow A(xx) \leq A(x) \text{ and } A(x) < A(y)\)

That is, \(A(xx) \leq A(x) < A(y)\)

That is, \(A(xx) \leq A(x) < A(xy) \leq A(y), \text{ since by (1)}\)

Therefore, \(A(x) < A(xy)\).

From (1) and (2), we get \(A(xy) = A(y)\).

Similarly, we can prove \(A(yx) = A(y)\).

Hence the Theorem.
Theorem 3.8 Let G be any group of prime order with identity ‘e’ and let A be any multi-anti fuzzy subgroup of G. Then prove A(x)=A(y)≥A(e), ∀x,y∈G-{e}. Conversely, any such A will be a multi-anti fuzzy subgroup of G.

Proof Given that o(G) = p , prime number.
That is, ∀x∈G, x^p=e.
Let x,y∈ G-{e} ⇒ x(≠e), y(≠e)∈G
⇒x^p=e ; y^p=e
⇒x^p = y^p
⇒ x = y
⇒ A(x) = A(y)(1)
Since A is a multi-anti fuzzy subgroup of G, ∀x,y∈G,
A(e) ≤ A(x) and A(e) ≤ A(y)
From (1), we get A(e) ≤ A(x) = A(y)
Hence, A(x) = A(y)≥A(e), ∀x,y∈G-{e} and hence the proof.
Conversely, Suppose A(x) = A(y) ≥A(e), ∀x,y∈G-{e}.
Claim: A is a multi-anti fuzzy subgroup of G .
That is, A(xy^{-1}) ≤ max{A(x), A(y)} , ∀x,y∈G.
Now, ∀x,y∈G-{e} ⇒ x,y^{-1}∈G-{e}, since G is a group
⇒ xy^{-1}∈G, since G is a group
⇒ (xy^{-1})^p = e , since o(G)=p
⇒ (xy^{-1})^p = e^p , since e^p = e
⇒ xy^{-1} = e (1)
⇒ (xy^{-1})y= (e)y
⇒ x = y
⇒ A(x) = A(y)
⇒ A(x) = A(y)≥A(e) , by the hypothesis
Now, , ∀x,y∈G-{e}, A(xy^{-1}) = A(e) , since by (1)
≤ A(x) = A(y) , by the hypothesis
= max{A(x), A(y)}
That is, A(xy^{-1}) ≤ max{A(x), A(y)}, ∀x,y∈G-{e}
Therefore, A(xy^{-1}) ≤ max{A(x), A(y)}, ∀x,y∈G
That is, A is a multi-anti fuzzy subgroup of G.
Definition 3.5 A multi-fuzzy set A of a set G is said to have “inf property” if, for any subset G_1 of G, there exists $a_0 \in G_1$ such that $A(a_0) = \inf \{A(a) / a \in G_1\}$.

Theorem 3.9 Let A be a multi-anti fuzzy subgroup of a group G with identity ‘e’. If A_t, where $t = A(e)$, has finite index, then A has inf property.

Proof Given A_t has finite index and $t = A(e)$.

By the definition, $A_t = \{ x \in G / A(x) \leq t = A(e) \}$.

Since A is a multi-anti fuzzy subgroup of G, $A(e) \leq A(x), \forall x \in G$.

Therefore (1) becomes as, $A_t = \{ x \in G / A(x) = A(e) \}$

Claim: A has inf property

Consider $\inf A(x)$, since A_t has finite index

$x \in A_t$

$= \inf A(e)$, since $x \in A_t$, $A(x) = A(e)$

$x \in A_t$

$= A(e)$, since $e \in A_t$, as $e \in G$

That is, there exists $e \in A_t$ such that $A(e) = \inf A(x)$

$x \in A_t$

Therefore, by the definition 3.5, A has inf property and hence the Theorem.

Definition 3.6 The family of lower level subgroups of A is $\{A_t / t \in \text{Im } A\}$ where A is any multi-anti fuzzy subgroup of a group G and it is denoted by F_A. That is, $F_A = \{A_t / t \in \text{Im } A\}$.

Moreover, if $\text{Im } A = \{t_0, t_1, t_2, ..., t_n\}$ with $t_0 < t_1 < t_2 < < t_n$, then the lower level subgroups of A form the chain: $A_{t_0} \subset A_{t_1} \subset A_{t_2} \subset \subset A_{t_n} = G$.

Theorem 3.10 Two multi-anti fuzzy subgroups A and B such that $\text{Card } \text{Im } A < \infty$ and $\text{Card } \text{Im } B < \infty$, of a group G are equal $\iff \text{Im } A = \text{Im } B$ and $F_A = F_B$.

Proof Given A and B are two multi-anti fuzzy subgroups of a group G and $A = B$.

$A = B \iff A(x) = B(x), \forall x \in G$

$\iff \text{Im } A = \text{Im } B$

$\iff \{t_0, t_1, ..., t_n\} = \{s_0, s_1, ..., s_n\}$ with $t_0 < t_1 < < t_n$; $s_0 < s_1 < < s_n$ and $t_i = s_i, i=0,1,..,n$, since $\text{Card } \text{Im } A < \infty$ and $\text{Card } \text{Im } B < \infty$.
∀i=0,1,…,n, clearly Aₙ and Bₙ are level subsets of A and B respectively ↔ Aₙ and Bₙ are lower level subgroups of A and B respectively, since A and B are multi-anti fuzzy subgroups of G.

Consider for i=0,1,2,…,n,

\[t_i = s_i \Leftrightarrow A_{t_i} = B_{s_i}, \forall i=0,1,\ldots,n \], since A=B.

\[\Leftrightarrow \{ A_{t_i} / t_i \in \text{Im } A \} = \{ B_{s_i} / s_i \in \text{Im } B \}, \forall i=0,1,\ldots,n. \]

\[\Leftrightarrow F_A = F_B, \text{ since by the definition 3.6.} \]

Hence the proof of the Theorem.

Theorem 3.11 Let A be any multi-anti fuzzy subgroup of a group G with identity ‘e’. Then Prove that A(xy)=A(y), ∀y∈G ↔ A(x)=A(e) where x∈G.

Proof Suppose A(xy)=A(y), ∀ y∈G

\[\Rightarrow A(xe) = A(e), \text{ since } e \in G \]

\[\Rightarrow A(x) = A(e), \text{ since } xe = x \in G \text{ as } G \text{ is a group} \]

Conversely, Suppose A(x)=A(e) where x∈G and let y∈G.

Since A is a multi-anti fuzzy subgroup of G, A(xy)≤max{A(x),A(y)}

That is, A(xy)≤max{A(e),A(y)}, since by the hypothesis.

\[= A(y), \text{ since A is a multi-anti fuzzy subgroup of G, A(e)≤A(x), } \forall x \in G \]

That is, A(xy)≤A(y), ∀y∈G ……………………………(1)

For all y∈G,

\[A(y) = A((x^{-1}x)y) \text{ where } x \in G \]

\[\leq \max \{ A(x^{-1}), A(xy) \} \]

\[= \max \{ A(x), A(xy) \} \]

\[= \max \{ A(e), A(xy) \}, \text{ since by the hypothesis} \]

\[= A(xy), \text{ since } A(e)\leq A(xy), \text{ as } xy \in G \text{ and } A \text{ is a multi-anti fuzzy subgroup} \]

That is, A(y)≤A(xy), ∀y∈G ……………………………(2)

Therefore, from (1) and (2) we get A(xy)=A(y), ∀ y∈G

Hence the proof of converse part and hence the Theorem.

Theorem 3.12 If A is a multi-anti fuzzy subgroupoid of a finite group G, then A is a multi-anti fuzzy subgroup of G.

Proof Since A is a multi-anti fuzzy subgroupoid of G,

\[A(xy) \leq \max \{ A(x), A(y) \}, \forall x,y \in G. \]

Claim: A is a multi-anti fuzzy subgroup of G
That is, to prove $A(x^{-1})=A(x), \forall x \in G$

Since A is a multi-fuzzy set of G, by Theorem,

$$A = A^{-1}$$

$$\Rightarrow A(x) = A^{-1}(x), \forall x \in G$$

$$\Rightarrow A(x) = A(x^{-1}), \forall x \in G$$, since A is a multi-anti fuzzy subgroup of G.

Hence the Theorem.

Theorem 3.13 Let C be any multi-anti fuzzy subgroup of G such that $\text{Im}(C) = \{ t=(t_1, t_2, \ldots, t_n) / t_i \in [0,1], i=1,2,\ldots,n \}$. If $C = A \cap B$, where A and B are multi-anti fuzzy subgroups of G, then either $A \subseteq B$ or $B \subseteq A$.

Proof If possible, let $A(x) > B(x)$ and $B(y) > A(y)$, for some $x, y \in G$.

Since $\tau \in \text{Im}(C)$, then $\tau = C(x) = (A \cap B)(x) = \min \{A(x), B(x)\} = B(x) < A(x)$ \ldots (1)

and $\tau = C(y) = (A \cap B)(y) = \min \{A(y), B(y)\} = A(y) < B(y)$ \ldots (2)

Therefore, from combining (1) and (2) we get,

$$B(y) > \tau = B(x) \text{ and } A(x) > \tau = A(y) \ldots \ldots \ldots \ldots (3)$$

That is, $B(x) < B(y)$ and $A(y) < A(x)$

This $\Rightarrow B(xy) = B(y)$ and $A(xy) = A(x)$, by the Theorem 3.7 \ldots (4)

But, then $\tau = C(xy) = (A \cap B)(xy) = \min \{A(xy), B(xy)\}$

$$= \min \{A(x), B(y)\}$$, by using (4)

$$> \tau$$, since by (3)

That is, $\tau > \tau$, which is untenable.

Hence the Theorem.

Theorem 3.14 If A is a multi-anti fuzzy subgroup of G and let $A_\ast = \{ x \in G / A(x) = A(e) \}$, prove that A_\ast is a subgroup of G.

Proof It is clear.

Theorem 3.15 If A is a multi-anti fuzzy subgroup of G and let $A^* = \{ x \in G / A(x) > 0 \}$, then prove the Support of A, A^* is a subgroup of G.

Proof It is clear.

Theorem 3.16 If A is any multi-anti fuzzy subgroup of a group G, then $A^{-1} = A$.

Proof It is clear.
Theorem 3.17 Let C be any multi-anti fuzzy subgroup of G such that $\text{Im}(C) = \{0,t\}$, where $t=(t_1,t_2,\ldots,t_n)$, $t_i \in [0,1]$, $\forall i=1,2,\ldots,n$. If $C=A\cap B$, for some multi-anti fuzzy subgroups A and B of G, then either $A \subseteq B$ or $B \subseteq A$.

Proof To obtain a proof by contradiction, Assume that $A(x) > B(x)$ and $B(y) > A(y)$ for some $x,y \in G$.

Then, since $\text{Im}(C)=\{0,t\}$, $t = C(x)$
\[= (A \cap B)(x) \]
\[= \min\{A(x),B(x)\} \]
\[= B(x) \]
\[< A(x) \] (1) and
\[t = C(y) \]
\[= (A \cap B)(y) \]
\[= \min\{A(y),B(y)\} \]
\[= A(y) \]
\[< B(y) \] (2)

Therefore, from combining (1) and (2), we get
\[B(x) = t < B(y) \text{ and } \]
\[A(y) = t < A(x) \] (3)

That is, $B(x) < B(y)$ and $A(y) < A(x)$.

Hence, by the Theorem 3.7, $A(xy) = A(x)$ and $B(xy) = B(y)$ (4)

Hence, $A(xy) = A(x) > t$ and $B(xy) = B(y) > t$, from (3) and (4) (5)

Now, $C(y) = (A \cap B)(y)$
\[= \min\{A(y),B(y)\} \]
\[= A(y) \]
\[= t \]
\[= B(x) \]

Therefore, this $\Rightarrow B(x) = C(y)$ (6)

Therefore, $t = C(x) = B(x)$, since by (1)
\[= C(y) \text{, since by (6)} \]
\[= A(y) \text{, since by (2) (since Im(C) = \{0,t\})} \]

Hence, $C(xy) = (A \cap B)(xy)$
\[= \min\{A(xy),B(xy)\} \]
\[> t \text{, since from (5)} \]

That is, $C(xy) > t = \max\{C(x),C(y)\}$, since $C(x) = C(y) = t$

\[\geq C(xy) \text{, since C is a multi-anti fuzzy subgroup of G} \]
Therefore, this \(\Rightarrow C(xy) > C(xy) \), which is the desired contradiction.
Hence the Theorem also.

Theorem 3.18 A multi-fuzzy subset \(A \) of a group \(G \) is a multi-anti fuzzy subgroup of \(G \) if and only if each multi-lower level subset \(A_t \) where \(t \in \text{Im}(A) \), are subgroups of \(G \).

Proof It is clear.

Theorem 3.19 If \(C \) is a multi-anti fuzzy subgroup of \(G \) with \(3 \leq \text{card} \text{Im}(C) < \infty \), then there exist multi-anti fuzzy subgroups \(A \) and \(B \) of \(G \) satisfying \(C = A \cap B, A \not\subset B \) and \(B \not\subset A \).

Proof Let \(\text{Im}(C) = \{ t_i = (t_{i1}, t_{i2}, ..., t_{im}) \mid 2 \leq n \leq \infty, m < \infty \} \) and \(t_0 < t_1 < ... < t_n \).
Choose \(s_i = (s_{i1}, s_{i2}, ..., s_{im}) \), \(i = 1, 2 \) where \(s_i \in [0,1] \), \(j = 1, 2, ..., m \) to be such that \(t_0 < s_1 < t_1 < s_2 < t_2 < ... < t_n \).
Then \(\{ e \} \subset C_{t_0} \subset C_{t_1} \subset C_{t_2} \subset C_{t_3} \subset ... \subset C_{t_n} = G \).
That is, multi-lower level subgroups of a multi-anti fuzzy subgroup \(C \) of a group \(G \) form the chain.
Define multi-fuzzy subsets \(A \) and \(B \) of \(G \) by

\[
A(x) = \begin{cases}
 s_2 & \text{if } x \in C_{t_0} \\
 t_0 & \text{if } x \in C_{t_1} \\
 C(x) & \text{otherwise}
\end{cases} \quad \text{and} \quad B(x) = \begin{cases}
 t_1 & \text{if } x \in C_{t_0} \\
 s_1 & \text{if } x \in C_{t_1} \\
 C(x) & \text{otherwise}
\end{cases}
\]

It is clear from Theorem 3.18 that, \(A \) and \(B \) are multi-anti fuzzy subgroups of \(G \).
Finally, a routine computation confirms that \(C = A \cap B, A \not\subset B \) and \(B \not\subset A \).
Hence the Theorem.

Theorem 3.20 If \(C \) is a multi-anti fuzzy subgroup of \(G \) such that \(\text{Im}(C) = \{ t_0, t_1 \} \) where \(t_i = (t_{i1}, t_{i2}, ..., t_{im}) \), \(i = 0, 1 \);
\(t_0 \in [0,1], t_1 \in [0,1], j = 1, 2, ..., m \) and \(t_0 < t_1 \), then there exist multi-anti fuzzy subgroups \(A \) and \(B \) of \(G \) such that
\(C = A \cap B, A \not\subset B \) and \(B \not\subset A \).

Proof It is clear.

Theorem 3.21 Let \(A \) be a multi-anti fuzzy subgroup of a group \(G \). Then prove

i. the identity element of \(A \) is unique and
ii. the inverse of any element of \(A \) is unique.

Proof Let \(A(e_1) \) and \(A(e_2) \) be two identity elements of multi-anti fuzzy subgroup \(A \).
Since \(A(e_1) \) is an identity element of \(A \),
\(A(e_1) \leq A(e_2) \) \((1)\)
Since $A(e_2)$ is another identity element of A,

$$A(e_2) \leq A(e_1) \quad \text{(2)}$$

Therefore, from (1) and (2), we get

$$A(e_1) \leq A(e_2) \leq A(e_1)$$

This implies that $A(e_1) = A(e_2)$

Hence the identity element of A is unique.

Let x' and x^\ast be two inverses of $x \in G$.

Then $xx' = e$ and $xx^\ast = e$, since G is a group.

This implies that $A(xx') = A(e)$ and $A(xx^\ast) = A(e)$

$$\implies A(x^{-1}x') = A(x^{-1}e) \quad \text{and} \quad A(x^{-1}x^\ast) = A(x^{-1}e)$$

$$\implies A(ex') = A(x^{-1}) \quad \text{and} \quad A(ex^\ast) = A(x^{-1})$$

$$\implies A(x') = A(x^{-1}) \quad \text{and} \quad A(x^\ast) = A(x^{-1})$$

$$\implies A(x') = A(x^\ast)$$

$$\implies$$ inverse is unique in A.

Hence the Theorem.

Theorem 3.22 If A is a multi-anti fuzzy subgroup of a group G and $A(xy^{-1}) = A(e)$, then for all $x, y \in G$,

1. $A(x) = A(y^{-1})$,
2. $A(x^{-1}) = A(y^{-1})$
3. $A(x^{-1}) = A(y)$

Proof It is clear.

Theorem 3.23 Let A be a multi-anti fuzzy subgroup of a group G. Then $A(x^{-1}) = A(x)$ and $A(e) \leq A(x)$, $\forall x \in G$, where ‘e’ is the identity element of G.

Proof $\forall x \in G, A(x) = A((x^{-1})^{-1})$

$$\geq A(x^{-1})$$

$$\geq A(x)$$

Hence $A(x) = A(x^{-1})$, $\forall x \in G$………(1)

Now, $A(e) = A(xx^{-1})$

$$\leq \max\{A(x), A(x^{-1})\}$, since A is a multi-anti fuzzy subgroup of G.

$$= \max\{A(x), A(x)\}$, since by (1)

$$= A(x)$$

That is, $A(e) \leq A(x), \forall x \in G$.
Theorem 3.24[15] If A is a multi-anti fuzzy subgroup of a group G with identity ‘e’, then prove that $A(xy^{-1})=A(e) \Rightarrow A(x)=A(y), \forall x, y \in G$.

Proof It is clear.

Theorem 3.25[15] A is a multi-anti fuzzy subgroup of a group $G \iff A(xy^{-1}) \leq \max\{A(x), A(y)\}, \forall x, y \in G$.

Proof It is clear.

Theorem 3.26 Let \overline{A} be the collection of all multi-anti fuzzy subgroups of a group G and \overline{B} be the collection of all multi-lower level subgroups of members of \overline{A}. Then there is a one-one correspondence between the subgroups of G and the equivalence classes of multi-lower level subgroups (under a suitable equivalence relation on \overline{B}).

Proof Here $\overline{A} = \{ A / A \text{ is a multi-anti fuzzy subgroup of } G \}$ and $\overline{B} = \{ A_t / A \in \overline{A}, \ t = (t_1, t_2, \ldots, t_i, \ldots), \ t_i \in [0,1], \forall i \}$

Let H be any subgroup of G.

Claim: \exists a 1-1 map between H and $[A_i]$, where $[A_i]$ is the equivalence classes of A_i.

$\overline{B} = \overline{A} \times \mathbb{I}^n$, where $\mathbb{I}^n=[0,1] \times [0,1] \times \ldots \text{n times}$.

Define a relation ‘~’ on \overline{B} by

$\forall (A,t), (B,s) \in \overline{B}, (A,t) \sim (B,s) \iff A_t = B_s$

Claim : ‘~’ is an equivalence relation on \overline{B}

i. Reflexive : Since $A_t = A_t$, $(A,t) \sim (A,t)$. Therefore, ‘~’ is reflexive.

ii. Symmetric: Suppose $(A,t) \sim (B,s)$.

$\Rightarrow A_t = B_s, \text{ since by ‘~’}$

$\Rightarrow B_s = A_t$

$\Rightarrow (B,s) \sim (A,t), \text{ since by ‘~’}$

Therefore, ‘~’ is symmetric.

iii. Transitive : Let $(A,r) \sim (B,s)$ and $(B,s) \sim (C,t)$.

Then this $\Rightarrow A_r = B_s$ and $B_s = C_t$

$\Rightarrow A_r = C_t$

$\Rightarrow (A,r) \sim (C,t)$

Therefore, ‘~’ is transitive.

Hence ‘~’ is an equivalence relation on \overline{B}.

So, the relation ‘~’ partitions \overline{B}.
Therefore, by the Theorem, each subgroup H of G can be realised as a multi-lower level subgroup of some fuzzy subgroup, $H = A_i$, \ldots \ldots \ldots (1)$, for some $A \in \mathcal{A}$ and $t=(t_1,t_2,\ldots)$, $t_i \in [0,1], \forall i$.

Define a map $f:[A_i] \to A_0(=H)$, since by (1)

Clearly, f is one-one map.

Since H is arbitrary subgroup of G, $f:[A_i] \to H$ is a one-one correspondence between the equivalence classes $[A_i]$ of A and subgroups of G.

Hence the Theorem.

Theorem 3.27 If A is a multi-anti fuzzy subgroup of a group G and $A(x^2)=A(x), \forall x \in G$, then $A(x)=A(e)$.

Proof It is clear.

4. Product Of Multi-Anti Fuzzy Subgroups

Definition 4.1 Define the binary operation \circ on $MFP(G)$, the multi-fuzzy power set of a group G and the unary operation $^{-1}$ on $MFP(G)$ as follows:

$$\forall A,B \in MFP(G) \text{ and } \forall x \in G, \quad (A \circ B)(x) = \max \{ \min \{A(y), B(z) / y,z \in G, yz = x \} \}$$

and

$$A^{-1}(x) = A(x^{-1}).$$

We call $A \circ B$ the product of A and B and A^{-1}, the inverse of A. The binary operation \circ is associative.

Theorem 4.1 Let A be a multi-fuzzy subset of a group G. Then A is a multi-anti fuzzy subgroup of G if A satisfies the following conditions:

(i) $A \subseteq A \circ A$

(ii) $A^{-1} \subseteq A$ or $A^{-1} \supseteq A$ or $A^{-1} = A$

Proof Let A be a multi-anti fuzzy subgroup of G.

Then $A(e) \leq A(x)$, $\forall x \in G$.

Claim (i): $A \subseteq A \circ A$

Since A is a multi-anti fuzzy subgroup of G, $A(e) \leq A(x)$, $\forall x \in G$.

Let $x \in G$ be any arbitrary element of G.

Then $A(x) = A(xe)$

$$\leq \max \{ A(x), A(e) \} \text{, since } A \text{ is a multi-anti fuzzy subgroup of } G.$$

$$= \min \{ \max \{ A(x), A(e) \} \}$$

$$= \max \{ \min \{ A(x), A(e) \} \}$$

$$= \sup \{ \min \{ A(x), A(e) \} \}$$

$$= (A \circ A)(xe)$$
= (A◦A)(x)
That is, A(x) ≤ (A◦A)(x) , ∀x ∈ G
This implies A ⊆ A◦A
Claim (ii): A⁻¹ ⊆ A or A⁻¹ ⊇ A or A⁻¹ = A
A⁻¹(x) = (A⁻¹i(x))i∈I
 = (A⁻¹i(x⁻¹))i∈I , since A is a multi-anti fuzzy subgroup, each Aᵢ is anti fuzzy subgroup
 = (Aᵢ(x))i∈I
 = A(x) , ∀x ∈ G
Therefore, A⁻¹ = A and hence the Theorem.

Theorem 4.2 Let A and B be any two arbitrary multi-anti fuzzy subgroups of a group G. Then A◦B is a multi-anti fuzzy subgroup of G ⇔ A◦B = B◦A
Proof Suppose A◦B is a multi-anti fuzzy subgroup of G
⇒ A◦B = (A◦B)⁻¹ , since by the Theorem 4.1.
⇒ A◦B = B⁻¹◦A⁻¹
⇒ A◦B = B◦A
Conversely, Suppose that A◦B = B◦A(1)
Then ⇒ (A◦B)⁻¹ = (B◦A)⁻¹
⇒ (A◦B)⁻¹ = A⁻¹◦B⁻¹
⇒ (A◦B)⁻¹ = A◦B(2)
Also, (A◦B) ◦ (A◦B) = A◦(B◦A)◦B , since ◦ is associative
= A◦(A◦B◦B) , since by (1)
= (A◦A)◦(B◦B) , since ◦ is associative
⊂ A◦B(3),since A and B are multi-anti fuzzy subgroups,
(A◦A) ⊂ A and (B◦B) ⊂ B
Therefore, from (2) and (3), by the Theorem 4.1, (A◦B) is a multi-anti fuzzy subgroup of G.

Theorem 4.3 A non-empty multi-fuzzy subset B of a multi-anti fuzzy subgroup A of a group G is a multi-anti fuzzy subgroup of A ⇔ B◦B⁻¹ ⊇ B.
Proof Let B be a multi-anti fuzzy subgroup of A.
Then this ⇒ B⁻¹ = B(1)
Claim: B◦B⁻¹ ⊇ B
∀x ∈ G, B◦B⁻¹(x) = sup{min{B(y), B⁻¹(z)} / y, z ∈ G and yz = x}
\[= \sup \{ \min \{ B(y), B(z) \} / y, z \in G \text{ and } yz = x \}, \text{ since by (1)} \]

\[= B \cdot B(x) \]

\[\trianglerightequal B(x), \text{ since } B \text{ is a multi-anti fuzzy subgroup} \]

Therefore, \(B \cdot B^{-1} \trianglerightequal B \)

Conversely, Suppose \(B \cdot B^{-1} \trianglerightequal B \) ………………(2)

Claim: \(B \) is a multi-anti fuzzy subgroup of \(A \)

That is, to prove that \(B(xy^{-1}) \leq \max \{ B(x), B(y) \}, \forall x, y \in A \)

Let \(x, y \in A \Rightarrow x, y \in G \), since \(A \) is a multi-anti fuzzy subgroup of \(G \).

Now, \(B(xy^{-1}) \leq B \cdot B^{-1}(xy^{-1}) \), by (2)

\[= \sup \{ \min \{ B(x), B^{-1}(y^{-1}) \} \} \]

\[= \min \{ \sup \{ B(x), B^{-1}(y^{-1}) \} \} \]

\[\leq \sup \{ B(x), B^{-1}(y^{-1}) \} \]

\[= \max \{ B(x), B(y^{-1}) \}, \text{ since } B = B^{-1} \text{ as } B \text{ is a multi-fuzzy set of } G. \]

\[= \max \{ B(x), B(y) \}, \text{ since } B(x) = B(x^{-1}), \forall x \in G \text{ as } B \text{ is a multi-fuzzy set of } G. \]

That is, \(B(xy^{-1}) \leq \max \{ B(x), B(y) \}, \forall x, y \in A \).

Therefore, \(B \) is a multi-anti fuzzy subgroup of \(A \) and hence the Theorem.

Theorem 4.4 A non-empty multi-fuzzy subset \(B \) of a multi-anti fuzzy subgroup \(A \) of a group \(G \) is a multi-anti fuzzy subgroup of \(A \) \(\iff \) \(B \cdot B^{-1} = B \)

Proof Let \(B \) be a multi-anti fuzzy subgroup of \(A \). Then \(B = B^{-1} \).

Therefore, \(B \cdot B^{-1} \trianglerightequal B \), by the Theorem 4.3…………………(1)

Claim : \(B \cdot B^{-1} \subseteq B \)

Now, \(\forall x \in G \),

\[B(x) = \max \{ B(x), B(e) \}, B \text{ is a multi-anti fuzzy subgroup} \]

\[\geq \min \{ \max \{ B(x), B(e) \} \} \]

\[= \min \{ \max \{ B(x), B(e^{-1}) \} \} \]

\[= \min \{ \max \{ B(x), B^{-1}(e) \} \} \]

\[= \max \{ \min \{ B(x), B^{-1}(e) \} \} \]

\[= \sup \{ \min \{ B(x), B^{-1}(e) \} \} \]

\[= B \cdot B^{-1}(xe) \]

\[= B \cdot B^{-1}(x) \]

Therefore, \(B(x) \geq B \cdot B^{-1}(x), \forall x \in G \)

That is, \(B \trianglerightequal B \cdot B^{-1} \) and hence the claim. ………………………………..(2)
From (1) and (2), \(B = B \circ B^{-1} \).

Conversely, Suppose \(B \circ B^{-1} = B \).

This implies that \(B \cdot B^{-1} \supseteq B \).

Therefore, by the Theorem 4.3, \(B \) is a multi-anti fuzzy subgroup of \(A \) and hence the Theorem.

Theorem 4.5 Let \(A \) and \(B \) be any two multi-anti fuzzy subgroups of a group \(G \). Then \(A \circ B \) is a multi-anti fuzzy subgroup of \(G \) \(\iff \) \(A \circ B = B \circ A \).

Proof: Suppose \(A \circ B \) is a multi-anti fuzzy subgroup of \(G \).

\[
A \circ B = (A \circ B)^{-1}, \text{ since by the Theorem 4.1.}
\]

\[
A \circ B = B^{-1} \circ A^{-1}
\]

\[
A \circ B = B \circ A, \text{ since } A \text{ and } B \text{ are multi-anti fuzzy subgroups}
\]

Conversely, Suppose that \(A \circ B = B \circ A \).

To prove that \(A \circ B \) is a multi-anti fuzzy subgroup of \(G \), it is enough to prove that \((A \circ B) \circ (A \circ B)^{-1} = A \circ B \).

Now, \((A \circ B) \circ (A \circ B)^{-1} = (A \circ B) \circ (B^{-1} \circ A^{-1}) \)

\[
= A \circ (B \circ B^{-1}) \circ A^{-1}, \text{ since } \circ \text{ is associative}
\]

\[
= (A \circ B) \circ A^{-1}, \text{ since } B \circ B^{-1} = B \text{ as } B \text{ is a multi-anti fuzzy subgroup}
\]

\[
= (B \circ A) \circ A^{-1}, \text{ by the hypothesis}
\]

\[
= B \circ (A \circ A^{-1}), \text{ since } \circ \text{ is associative}
\]

\[
= B \circ A, \text{ since } A \circ A^{-1} = A \text{ as } A \text{ is a multi-anti fuzzy subgroup}
\]

\[
= A \circ B, \text{ since by the hypothesis}
\]

That is, \((A \circ B) \circ (A \circ B)^{-1} = A \circ B \).

Therefore, \(A \circ B \) is a multi-anti fuzzy subgroup of \(G \) and hence the Theorem.

Corollary: If \(A \) and \(B \) are two multi-anti fuzzy subgroups of an abelian group \(G \), then \(A \circ B = B \circ A \) and hence by the Theorem 4.2, \(A \circ B \) is a multi-anti fuzzy subgroup of \(G \).

5. Fuzzification Of A Multi-Lower Level Subset

Definition 5.1 Let \(A \) be a multi-fuzzy set of a set \(G \). Then the multi-lower level subset is \(A_t = \{ x \in G / A(x) \leq t \} \) where \(t = (t_1, t_2, \ldots) \), \(t_i \in [0,1], \forall i \). The fuzzification of \(A_t \) is the multi-fuzzy set \(\hat{A}_t \) defined by

\[
\hat{A}_t(x) = \begin{cases} A(x), & \text{if } x \in A_t \\ 0, & \text{otherwise} \end{cases}
\]

Clearly, \(\hat{A}_t \subseteq A \) and \((\hat{A}_t)_t = A_t \).
Theorem 5.1 If A is a multi-anti fuzzy subgroup of a group G, then \hat{A}_t is also a multi-anti fuzzy subgroup of G, where $t = (t_1, t_2, \ldots), t_i \in [0,1], \forall i$ and $t \geq A(e)$.

Proof Clearly, A_i is a subgroup of G.

Let $x,y \in G$.

Case (i): Suppose $x,y \in A_i$.

Then $\hat{A}_t(xy^{-1}) = A(xy^{-1})$, by the definition 5.1.

$\leq \max \{ A(x), A(y) \}$, since A is multi-anti fuzzy subgroup.

$= \max \{ \hat{A}_t(x), \hat{A}_t(y) \}$, by the definition 5.1.

Hence, $xy^{-1} \in \hat{A}_t$.

Case (ii): Suppose $x \in A_i, y \notin A_i$. Then $xy^{-1} \notin A_i$.

$\hat{A}_t(xy^{-1}) = 0$, since by the definition 5.1.

$\leq \max \{ \hat{A}_t(x), \hat{A}_t(y) \}$

Hence, $xy^{-1} \notin \hat{A}_t$.

Case (iii): Suppose $x,y \notin A_i$. Then $xy^{-1} \notin A_i$.

$\hat{A}_t(xy^{-1}) = 0$, since by the definition 5.1.

$\leq \max \{ \hat{A}_t(x), \hat{A}_t(y) \}$

Hence, $xy^{-1} \in \hat{A}_t$.

Hence the Theorem.

6. Normal Multi-Anti Fuzzy Subgroup

Definition 6.1 A multi-anti fuzzy subgroup A of a group G is called normal multi-anti fuzzy if $A(x) = A(y^{-1}xy), \forall x,y \in G$.

Definition 6.2 [15] Let A be a multi-fuzzy set of G. For $t=(t_1,t_2,\ldots,t_i,\ldots)$, where $t_i \in [0,1], \forall i$, the set $A_t = \{ x \in G / A(x) \leq t \}$ is called a multi-lower level subset of the multi-fuzzy set A.

Definition 6.3 A multi-anti fuzzy subgroup A of a group G is called ‘normal multi-anti fuzzy’ (invariant multi-anti fuzzy) if $A(xy) = A(yx), \forall x,y \in G$.

Lemma 6.1 Let μ be an anti fuzzy subgroup of a group G and $g \in G$. Then $\mu(g) = t$ \iff $g \notin \mu$ and $g \notin \mu_t$, $\forall t > s$, $t \in [0,1]$.

Lemma 6.2 [19] Let N be a normal subgroup of G. Then $xy \in N$ \iff $yx \in N$, where $x,y \in G$.
Lemma 6.3 [19] If μ is a normal fuzzy subgroup of G, then each level subgroup of μ is a normal subgroup of G.

Theorem 6.1 If A is a normal multi-anti fuzzy subgroup of G, then each multi-lower level subgroup of A is a normal subgroup of G.

Proof It is clear.

Lemma 6.4 [19] Let μ be a fuzzy subgroup of G. If $\mu_t, t \in \text{Image}\mu$, is a normal subgroup of G, then μ is normal fuzzy.

Theorem 6.2 Let A be a multi-anti fuzzy subgroup of G. If $A_t, t \in \text{Image}A$, where $t=(t_1,t_2,\ldots,t_i,\ldots)$ is a normal subgroup of G, then A is a normal multi-anti fuzzy subgroup of G.

Proof Let $x,y \in G$, $A(xy) = s$ and $r = (r_1,r_2,\ldots,r_i,\ldots)$, $s = (s_1,s_2,\ldots,s_i,\ldots)$, where $r_i, s_i \in [0,1]$ be such that $s > r$.

\[\text{(i)} \]

Then by lemma 6.1, $xy \in A_s$ and $xy \notin A_r$.

Therefore, by lemma 6.2, $yx \in A_s$ and $yx \notin A_r$.

Since $yx \in A_s \Rightarrow A(yx) = s \quad \text{(ii)}$

Therefore, by (i) and (ii), $A(xy) = A(yx)$

Therefore, A is a multi-anti fuzzy normal and hence the Theorem.

Theorem 6.3 A multi-anti fuzzy subgroup A of G is normal fuzzy \iff each multi-lower level subgroups $A_t, t \in \text{Image}A$, are normal subgroup of G.

Proof By the Theorems 6.1 and 6.2, it is clear.

Theorem 6.4 Let $A, B \in \text{MFP}(G)$ and let $a= \max \{A(x) / x \in G\}$. Then the following assertions hold:

(i) $(A\circ B)(x) = \max \{ \min \{A(y), B(y^{-1}x) \} \} \quad \forall y \in G$

(ii) $(a \circ A)(x) = A(y^{-1}x), \forall x,y \in G$

(iii) $(A \circ a)(x) = A(xy^{-1}), \forall x,y \in G$
Proof It is clear.

Theorem 6.5 Let $A \in \text{MFP}(G)$, the multi-fuzzy power set of a group G. Then the following assertions are equivalent:

(i) $A(yx) = A(xy)$, $\forall x, y \in G$; In this case, A is called an *Abelian multi-fuzzy* subset of G.

(ii) $A(xy^{-1}) = A(y)$, $\forall x, y \in G$

(iii) $A(xy^{-1}) \geq A(y)$, $\forall x, y \in G$

(iv) $A(xy^{-1}) \leq A(y)$, $\forall x, y \in G$

(v) $A \circ B = B \circ A$, $\forall B \in \text{MFP}(G)$

Proof It is clear.

Definition 6.4 Let A be a multi-anti fuzzy subgroup of a group G. Then A is called a normal multi-anti fuzzy subgroup of G if A is an Abelian multi-fuzzy subset of G. Let $\text{NMAF}(G)$ denote the set of all normal multi-anti fuzzy subgroups of G.

Theorem 6.6 If G is a commutative group, then every multi-anti fuzzy subgroup of G is normal.

Proof Let A be any multi-anti fuzzy subgroup of a commutative group G.

Claim: A is normal. That is, $A(xy) = A(yx)$, $\forall x, y \in G$.

Let $x, y \in G$.

Since G is a commutative group, $xy = yx$

$$\Rightarrow A(xy) = A(yx)$$

$$\Rightarrow A$$ is normal multi-anti fuzzy subgroup of G

Hence the Theorem.

Theorem 6.7 A multi-anti fuzzy subgroup A of a group G is normal $\iff \forall x, y \in G$, $A(x) = A(yx^{-1})$.

Proof Let A be a normal multi-anti fuzzy subgroup of G.

Then $A(xy) = A(yx)$ $\iff A((xy)y^{-1}) = A((yx)y^{-1})$

$\iff A(xe) = A(yxy^{-1})$

$\iff A(x) = A(yxy^{-1})$, $\forall x, y \in G$.

Theorem 6.8 Let A be a normal multi-anti fuzzy subgroup of a group G. Then $A_+ = \{ x \in G / A(x) = A(\epsilon) \}$ and $A^- = \{ x \in G / A(x) > 0 \}$, the Support of A, are normal multi-anti fuzzy subgroups of G.

Proof It is clear.
Corollary: The converse of the above Theorem 6.8 is not true.

Proof Let G be a group and H be a subgroup of G which is not normal.

Define the multi-fuzzy set A of G by $A(e) = 0$, $A(x) = 1/2$ if $x \in H \setminus \{e\}$ and $A(x) = 3/4$ if $x \in G \setminus H$.

Then A is a multi-anti fuzzy subgroup of G, since its level sets are subgroups of G.

Now, $A_e = H$ is not normal in G where $t = (\frac{1}{2}, \frac{1}{2}, \ldots)$.

Hence A is not a normal multi-anti fuzzy subgroup of G.

However, $A_e = \{e\}$ and $A^* = G$ are normal in G.

Hence the Corollary.

Lemma 6.5 If A is a multi-anti fuzzy subgroup of a group G and H is any subgroup of G, then A/H is a multi-anti fuzzy subgroup of H.

Theorem 6.9 Suppose A is a multi-anti fuzzy subgroup of a group G. Let $N(A) = \{x \in G / A(xy) = A(yx), \forall y \in G\}$. Then N(A) is a subgroup of G and the restriction of A to N(A), $A/N(A)$, is a normal multi-anti fuzzy subgroup of N(A).

Proof Clearly, $e \in N(A)$. Therefore, $N(A) \neq \emptyset$.

Claim: N(A) is a subgroup.

Let $x, y \in N(A)$. For any $z \in G$, $A(xy^{-1}.z) = A(x.y^{-1}z)$, since by associative in G

\[
= A(y^{-1}z.x), \text{ since } x \in N(A)
\]
\[
= A((y^{-1}.z)x)^{-1}
\]
\[
= A(x^{-1}z^{-1}.y)
\]
\[
= A(y.x^{-1}z^{-1}), \text{ since } y \in N(A)
\]
\[
= A((y.x^{-1}z^{-1})^{-1})
\]
\[
= A(zxy^{-1})
\]

Therefore, $xy^{-1} \in N(A), \forall x, y \in N(A)$.

Hence N(A) is a subgroup of G.

Therefore, by the previous lemma 6.5, $A/N(A)$ is a multi-anti fuzzy subgroup of N(A).

Claim: Normal.

Let $x, y \in N(A)$. Then $A/N(A) (xy) = A/N(A) (yx)$

Therefore, $A/N(A)$ is a normal multi-anti fuzzy subgroup of N(A).

Hence the Theorem.
Remark: The subgroup \(N(A) \) of \(G \), defined in the above Theorem 6.9, is called the "normalizer of \(A \) in \(G \)".

Definition 6.5 If \(A \) and \(B \) are two multi-anti fuzzy subgroups of \(G \) and there exist \(u \in G \) such that \(A(x) = B(ux^{-1}), \forall x \in G \), then \(A \) and \(B \) are called conjugate multi-anti fuzzy subgroups (with respect to ‘u’) and we write \(A = B^u \) where \(B^u(x) = B(ux^{-1}), \forall x \in G \).

Theorem 6.10 Let \(A \) be a multi-anti fuzzy subgroup of a group \(G \). Then the cardinal number of the set \(\{ A^u / u \in G \} = [G : N(A)] \), the index of the normalizer \(N(A) \) in \(G \).

Proof Let \(u, v \in G \). Then
\[
A^u = A^v \iff A^u(x) = A^v(x), \forall x \in G
\]
\[
\iff A(ux^{-1}) = A(vx^{-1}), \forall x \in G, \text{ since by the definition 6.5}
\]
\[
\iff A(x) = A(x), \forall x \in G
\]
\[
\iff A(ux^{-1}.x) = A(x. uv^{-1}), \forall x \in G, \text{since by the Theorem 6.5 (i) as \(A \) is an abelian multi-fuzzy set of \(G \), equivalent conditions.}
\]
\[
\iff uv^{-1} \in N(A)
\]
\[
\iff u^{-1}N(A) = v^{-1}N(A)
\]

Thus, \(A^u \mapsto u^{-1}N(A) \) is a bijection map from \(\{ A^u / u \in G \} \) onto \(\{ uN(A) / u \in G \} \).

Hence the Theorem.

Theorem 6.11 Let \(A \) be a multi-anti fuzzy subgroup of a group \(G \). Then \(\cup A^u \in NMAF(G) \)
\(u \in G \)
and is the smallest normal multi-anti fuzzy subgroup of \(G \), that is contains \(A \).

Proof
Since \(A^u \in MAF(G), \forall u \in G, \cup A^u \in MAF(G) \).
\(u \in G \)

Claim: \(\cup A^u \) is normal.
\(u \in G \)

\(\forall x \in G, \{ A^u / u \in G \} = \{ A^{ux} / u \in G \} \)
Thus, \(\text{Max } A^{u}(xy^{-1}) = \text{Max } A(u(xy^{-1})u^{-1}) \)
\(u \in G \quad u \in G \)
\[= \max_{u \in G} A(ux(ux)^{-1})\]

\[= \max_{u \in G} A^{ux}(y)\]

\[= \max_{u \in G} A^{u}(y), \forall x, y \in G.\]

Hence \(\cup A^{u} \in \text{NMAF}(G)\), by Theorem.

Now, let \(B \in \text{NMAF}(G)\) with \(B \supseteq A\).

Then \(\Rightarrow B^{u} \supseteq A^{u}, \forall u \in G.\)

\(\Rightarrow B = B^{u} \supseteq A^{u}, \forall u \in G.\)

\(\Rightarrow B \supseteq A^{u}, \forall u \in G.\)

\(\Rightarrow B \supseteq \cup A^{u}.\)

\(u \in G\)

Therefore, \(\cup A^{u}\) is the smallest normal multi-anti fuzzy subgroup of \(G\), that is, contains \(A.\)

\(u \in G\)

Hence the Theorem.

7. **References**

